منابع مشابه
Unconditionally Secure Multipartite Quantum Key Distribution
We consider the problem of secure key distribution among n trustful agents: the goal is to distribute an identical random bit-string among the n agents over a noisy channel such that eavesdroppers learn little about it. We study the general situation where the only resources required are secure bipartite key distribution and authenticated classical communication. Accordingly, multipartite quant...
متن کاملSecure quantum key distribution using squeezed states
We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finitedimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel ...
متن کاملProvably Secure Quantum Key Distribution By Applying Quantum Gate
The need for Quantum Key Distribution (QKD) is strengthening due to its inalienable principles of quantum mechanics. QKD commences when sender transforms bits into qubits or quantum states by applying photon polarization and sends to the receiver. The qubits are altered when measured in incorrect polarization and cannot be reproduced according to quantum mechanics principles. BB84 protocol is t...
متن کاملSecure quantum key distribution using continuous variables of single photons.
We analyze the distribution of secure keys using quantum cryptography based on the continuous variable degree of freedom of entangled photon pairs. We derive the information capacity of a scheme based on the spatial entanglement of photons from a realistic source, and show that the standard measures of security known for quadrature-based continuous variable quantum cryptography (CV-QKD) are ina...
متن کاملQuantum key distribution with high loss: toward global secure communication.
We propose a decoy-pulse method to overcome the photon-number-splitting attack for Bennett-Brassard 1984 quantum key distribution protocol in the presence of high loss: A legitimate user intentionally and randomly replaces signal pulses by multiphoton pulses (decoy pulses). Then they check the loss of the decoy pulses. If the loss of the decoy pulses is abnormally less than that of signal pulse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Photonics
سال: 2014
ISSN: 1749-4885,1749-4893
DOI: 10.1038/nphoton.2014.149